지은이 : 바바 신야
2014년 홋카이도 대학 수산과학원을 수료했다. 2020년 11월부터 도쿄의과치과 대학 비상근 강사, 2021년 2월부터 이와테대학 객원 부교수, 2022년 4월부터 테이쿄 대학 특임 강사를 맡고 있다. 통계학, 예측 분석, 파이썬, R 등을 다루는 Logics of Blue(https://logics-of-blue.com/)라는 웹사이트도 관리하고 있다.저서로는 『平均?分散から始める一般化線形モデル入門』(プレアデス出版, 2015), 『時系列分析と?態空間モデルの基礎:RとStanで?ぶ理論と??』(プレアデス出版, 2018), 『RとStanではじめるベイズ統計モデリングによるデ?タ分析入門』(講談社, 2019), 『R言語ではじめるプログラミングとデ?タ分析』(ソシム, 2019), 『意思決定分析と予測の活用基礎理論からPython??まで』(講談社, 2021) 등이 있다.
CHAPTER 1 통계학 기본
_1.1 통계학
_1.2 왜 기술통계가 필요한가
_1.3 왜 추론통계가 필요한가
CHAPTER 2 파이썬과 주피터 노트북
_2.1 환경 구축
_2.2 주피터 노트북
_2.3 파이썬 프로그래밍
_2.4 넘파이와 팬더스
CHAPTER 3 기술통계
_3.1 데이터 분류
_3.2 수식을 읽는 방법
_3.3 도수분포
_3.4 1변량 데이터 통계량
_3.5 다변량 데이터 통계량
_3.6 층화분석
_3.7 그래프 활용
CHAPTER 4 확률과 확률분포
_4.1 확률론
_4.2 확률분포
_4.3 이항분포
_4.4 정규분포
CHAPTER 5 통계적 추정
_5.1 통계적 추론의 개념
_5.2 모집단에서 표본추출 시뮬레이션
_5.3 모평균 추정
_5.4 모분산 추정
_5.5 정규모집단에서 파생된 확률분포
_5.6 구간추정
CHAPTER 6 통계적 가설검정
_6.1 모평균에 대한 단일표본 t검정
_6.2 평균값 차이 검정
_6.3 분할표 검정
_6.4 검정 결과 해석
CHAPTER 7 통계모델
_7.1 통계모델 기본
_7.2 선형모델을 만드는 방법
_7.3 데이터 표현과 모델 명칭
_7.4 파라미터 추정: 가능도 최대화
_7.5 파라미터 추정: 손실 최소화
_7.6 예측 정확도 평가와 변수 선택
CHAPTER 8 정규선형모델
_8.1 연속형 독립변수가 하나인 모델: 단순회귀
_8.2 정규선형모델 평가
_8.3 분산분석
_8.4 독립변수가 여럿인 모델
CHAPTER 9 일반화선형모델
_9.1 일반화선형모델 기본
_9.2 로지스틱 회귀
_9.3 일반화선형모델 평가
_9.4 푸아송 회귀
CHAPTER 10 통계학과 머신러닝
_10.1 머신러닝 기본
_10.2 정규화와 리지 회귀, 라소 회귀
_10.3 파이썬을 이용한 리지 회귀와 라소 회귀
_10.4 선형모델과 신경망
도서 DB 제공 - 알라딘 인터넷서점 (www.aladin.co.kr)